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Abstract

In this paper, the existence and uniqueness solution of the Fredholm-
Volterra integral equations (F-VIEs) are considered in the space L2[0, 1]×
Cn[0, T ], 0 ≤ T < 1. Using a numerical technique, F-VIEs lead to a sys-
tem of linear Fredholm integral equations (SLFIEs). Also, the normality
and the continuity of integral operator are discussed. The Trapezoidal
Rule is used to get the solution of SLFIEs. Finally, numerical results
are discussed and the error estimate is computed.
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1 Introduction

Many problems of mathematical physics, contact problems in the theory of
elasticity and mixed problems of mechanics of continuous media are reduced
to mixed type of integral equations, see [1,11]. For this many different methods
are used to solve the integral equations analytically, see [6–8]. In addition, for
numerical methods, we refer to [5].

Phase-Lag has a very important role in our applied life and there are cur-
rently One, Dual and Three-Phases and each phase has a different applications.
For example, the Three-Phase-Lag model incorporates the microstructural in-
teraction effect in the fast-transient process of heat transport, see [4].

In this paper, we consider the Fredholm-Volterra integral equations of the
second kind with continuous kernels with respect to position and time. The
existence and uniqueness of the solution, under certain conditions, are dis-
cussed in the space L2[0, 1]×Cn[0, T ], 0 ≤ T < 1. We use a numerical method
to transform the Fredholm-Volterra integral equations to a linear system of
Fredholm integral equations [2, 9].

Consider the linear mixed integral equation,

y(u, t+q) = g(u, t)+λ

∫ 1

0

k(u, v)y(v, t)dv+λ

∫ t

0

Φ(t, τ)y(u, τ)dτ, (q << 1),

(1)
where q is the Phase-Lag is positive, very small and assumed to be intrinsic
properties of the medium. The constant parameter λ may be complex and
has many physical meanings, the function y(u, t) is unknown in the Banach
space and continuous with their derivative with respect to time in the space
L2[0, 1] × Cn[0, T ], 0 ≤ T < 1, where [0, 1] is the domain of integration with
respect to the position and the time t ∈ [0, T ] and it’s called the potential
function of the mixed integral equation. The kernel Φ(t, τ) is positive and
continuous in Cn[0, T ] and the known function g(u, t) is continuous and its
derivatives with respect to position and time, while the kernel of position
k(u, v) is a continuous function.
Using Taylor Expansion after neglecting the second derivative in the equation
(1) we get,

y(u, t)+q
∂y(u, t)

∂t
= g(u, t)+λ

∫ 1

0

k(u, v)y(v, t)dv+λ

∫ t

0

Φ(t, τ)y(u, τ)dτ, (q << 1),

(2)
with initial condition,

y(u, 0) = f(u). (3)

The equation (2) with initial condition (3) is called Integro-Differential
Equation for the Phase-Lag. The Integro-Differential Equation is a kind of
functional equation that has associate integral and derivatives of unknown
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function. These equations were named after the leading mathematicians who
have first studied them such as Fredholm, Volterra. Fredholm and Volterra
equations are the most encountered types. There is, formally only one differ-
ence between them, in the Fredholm equation the region of integration is fixed
where in the Volterra equation the region is variable. Integro-Differential Equa-
tions (IDEs) are given as a combination of differential and integral equations.
In the recent study there is a growing interest to solve Integro-Differential
Equations [10,12].
Integrating Eq.(2) and using initial condition (3) we get,

q y(u, t) = qf(u) +

∫ t

0

g(u, z)dz −
∫ t

0

y(u, z)dz + λ

∫ t

0

∫ 1

0

k(u, v)y(v, z)dvdz

+ λ

∫ t

0

∫ z

0

Φ(z, τ)y(u, τ)dτdz, (q << 1).

(4)

Interchanging the order of integration over the triangular domain in the τz-
plane reveals that the equation (4) becomes,

q y(u, t) = qf(u) +

∫ t

0

g(u, τ)dτ + λ

∫ t

0

∫ 1

0

k(u, v)y(v, τ)dvdτ

+

∫ t

0

[λΨ(t, τ)− 1]y(u, τ)dτ, (q << 1).

(5)

Where,

Ψ(t, τ) =

∫ t

τ

Φ(z, τ)dz.

The equation (5) is called Mixed Integral Equation with Phase-Lag Term in
position and time.

2 The existence and uniqueness of solution of

the F-VIEs

In order to guarantee the existence of a unique solution of equation (5), we
assume through this work the following conditions:

(i) The kernel k(u, v) ∈ L2([0, 1] × [0, 1]), u, v ∈ [0, 1] satisfies |k(u, v)| <
E, E is a constant.

(ii) The continuous function Ψ(t, τ) ∈ Cn([0, T ]) and satisfies |Ψ(t, τ)| ≤
B, s.t B is a constant, ∀ t, τ ∈ [0, T ].
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(iii) The function f(u) is continuous and satisfies the condition |f(u)| ≤
D, s.t D is a constant.

(iv) The function g(u, τ) with its partial derivatives with respect to the posi-
tion and time are continuous in the space L2[0, 1] × Cn[0, T ], 0 ≤ T <
1 and its norm is defined as,

‖g(u, τ)‖ =
n∑
k=0

max
0<τ≤T

∫ τ

0

([

∫ 1

0

g2(u, z)du]
1
2 )(k)dz = Q, Q is a constant.

3 The normality and continuity of the inte-

gral operator

To prove the existence and the uniqueness solution of equation (5), we use
the normality and continuity of the integral operator, with the help of Banach
fixed point. For this the integral equation (5) can be written in the integral
operator form,

V y = f(u) +
1

q

∫ t

0

g(u, τ)dτ + V y(u, t), (6)

and,
V y = Ky + [Ψ− I]y, (7)

where,

Ky =
λ

q

∫ t

0

∫ 1

0

k(u, v)y(v, τ)dvdτ,

[Ψ− I]y =
1

q

∫ t

0

[λΨ(t, τ)− 1]y(u, τ)dτ.

Theorem 3.1. If the conditions (i)-(iv) are satisfied and the integral oper-
ator (7) is a normal and continuous, then equation (5) has an unique solution
y(u, t) in the Banach space L2[0, 1]×Cn[0, T ], 0 ≤ T < 1, under the condition,

| λ |< |q|+ T + 1

(T + 1)[2E +B]
; (q 6= 0). (8)

4 The reduced system of Fredholm integral

equations and its solution

4.1 Quadratic numerical method

The importance of Quadratic numerical method comes from its wide applica-
tions in mathematical physics problems, wherever the eigenvalues and eigen-
functions of the integral equations are often studied and discussed. Also, this
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method has wide applications within the applied sciences especially within the
theory of elasticity, mixed problems of mechanics area and contact problem.

In this subsection, we tend to use this numerical technique to reduce the
F-VIEs to linear SFIEs of the second kind. We divide the interval [0, T ], 0 ≤
T < 1, as 0 = t0 < t1 < ... < ti < ... < tN = T, where t = ti, i = 0, 1, ..., N, to
get

q y(u, ti) = qf(u) +

∫ ti

0

g(u, τ)dτ + λ

∫ ti

0

∫ 1

0

k(u, v)y(v, τ)dvdτ

+

∫ ti

0

[λΨ(ti, τ)− 1]y(u, τ)dτ, (q << 1),

(9)

using the quadrature formula, for the Volterra integral terms [3], we have∫ ti

0

∫ 1

0

k(u, v)y(v, τ)dvdτ =
i∑

j=0

µj

∫ 1

0

k(u, v)y(v, tj)dv +O(~℘+1
i ), (10)

∫ ti

0

[Ψ(ti, τ)− 1]y(u, τ)dτ =
i∑

j=0

µj[Ψ(ti, tj)− 1]y(u, tj) +O(~℘+1
i ), (11)

∫ ti

0

g(u, τ)dτ =
i∑

j=0

µjg(u, tj) +O(~℘+1
i ), (12)

where, (~℘+1
i −→ 0, ℘ > 0) and ~ denotes the step size of the partition,

~i = max
0≤j≤i

ρj and ρj = tj+1 − tj.

The values of the weight formula µj and the constant ℘1 are depend on
the number of derivatives of Ψ(t, τ), ∀τ ∈ [0, T ], with respect to t. More
information for the characteristic points and the quadrature coefficients are
found in [5].
Using of equations (10), (11) and (12) in the equation (9) we get,

q y(u, ti) = qf(u) +
i∑

j=0

µjg(u, tj) + λ
i∑

j=0

µj

∫ 1

0

k(u, v)y(v, tj)dv

+
i∑

j=0

µj[λΨ(ti, tj)− 1]y(x, tj),

(13)

using the following notations:

y(u, ti) = yi(u), g(u, tj) = gj(u), Ψ(ti, tj) = Ψi,j.
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We can write (13) in the following form:

δiyi(u) = F (u) + λ

i∑
j=0

µj

∫ 1

0

k(u, v)yj(v)dv. (14)

Where,

δi = (q−λi), λi = µi(λΨi,i−1), F (u) = qf(u)+
i∑

j=0

µjgj(u)+
i−1∑
j=0

µj[λψi,j−1]yj(u).

The equation (14) leads us to say that, we have a finite number of unknown
functions yi(u), i = 0, 1, ..., N corresponding to the time interval 0 = t0 < t1 <
... < ti < ... < tN = T, and the solutions of yi(u) must be known. For this, we
say that the equation (14), for δi 6= 0, represents a finite system of Fredholm
integral equations of the second kind with continuous kernels with respect
to position, while, for δi = 0, we have a finite system of Fredholm integral
equations of the first kind.

The solution of the system (14), for δi 6= 0, can be obtained using different
methods. For example, by using the collocation method [8] and Galerkin
method [3]. Also, a variation of Nyström method is used in [5] to solve the
system (14). To obtain the solution of the system (14), we shall use the
trapezoidal rule. If we obtain, firstly, the value of y0(u), and let i = 0 in (14),
we get

δ0y0(u) = qf(u) + µ0g0(u) + λµ0

∫ 1

0

k(u, v)y0(v)dv, δ0 = q− µ0(λΨ0,0 − 1).

(15)
After obtaining the solution of equations (15), we can use the mathematical
induction to obtain the general solution of (14).

4.2 The trapezoidal rule (TR)

In this section, we can find the solution of the linear algebraic integral system
(14) by applying the TR. We will write the term of integration of the equation
(14) as follows: ∫ 1

0

K(u, v)dv =

∫ 1

0

k(u, v)yj(v)dv. (16)

In this method, we approximate K(u, v) with a collection of surface segments
and integrate across each of these. Let P be a partition of [0, 1] into n subin-
tervals of equal width, P : 0 = v0 < v1 < ... < vn = 1, where (vr − vr−1) = 1

n

for r = 1, 2, ..., n.
Here, instead of approximating K(u, v) with a horizontal surface segment

over [vr−1, vr], we shall approximate K(u, v) with the surface segment, that has
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the lines (vr−1, K(u, vr−1)) and (vr, K(u, vr)) as its endpoints-points that lie
on the surface of Z = K(u, v). Approximating the surface of Z = K(u, v) with
surface segments across successive intervals to obtain the TR. By evaluating
the integral on the Eq.(16), we obtain

∫ 1

0

k(u, v)yj(v)dv ≈ ∆v

2

[
k(u, v0)yj(v0) + 2

n−1∑
r=1

k(u, vr)yj(vr) + k(u, vn)yj(vn)

]
.

(17)
Where,

v0 = 0, vn = 1, vr =
r

n
, 1 ≤ r ≤ n− 1. (18)

It is known by this name TR because on each subinterval [vr−1, vr], we are
approximating the region bounded by the surface Z = K(u, v), the v-axis, and
the lines v = vr−1 and v = vr, with a region having a trapezoidal shape.

Theorem 4.1. Suppose that ∂2

∂v2
k(u, v)yj(v) exists on [0, 1]. Then for a pos-

itive integer n we have ∫ 1

0

k(u, v)yj(v)dv = Tn + En,

where,

Tn =
∆v

2

[
k(u, v0)yj(v0) + 2

n−1∑
r=1

k(u, vr)yj(vr) + k(u, vn)yj(vn)

]
,

and the error En is given by

En = − 1

12n2

∂2[k(u, c)yj(c)]

∂v2
,

for some value c in [0, 1]. Since the number c is not specified in this theo-
rem, we are unable to use this to determine the exact value of En for func-
tions k(u, v)yj(v) in general. However, one of the implications here is that the
magnitude of the error has the bounds

1

12n2
min
0≤v≤1

∣∣∣∣ ∂2∂v2k(u, v)yj(v)

∣∣∣∣ ≤ |En| ≤ 1

12n2
max
0≤v≤1

∣∣∣∣ ∂2∂v2k(u, v)yj(v)

∣∣∣∣ .
Thus if ∂2

∂v2
k(u, v)yj(v) is never 0 on [0, 1], then the error En must be non-zero.
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4.3 The procedure of solution

By substituting from (17) in (14), we have

δiyi(u) = F (u) +
λ∆v

2

i∑
j=0

µj[k0(u)yj,0 + kn(u)yj,n + 2
n−1∑
r=1

kr(u)yj,r], (19)

where k0(u) = k(u, v0). Since equation (19) must hold for all values of u, it
must hold for values of u equal to those chosen for the quadrature points so
that, um = vr, (m = 0, 1, 2, ..., n).
By picking those particular points we can generate the following linear system
of equations from the equation (19),

δiyi(um) = F (um) +
λ∆v

2

i∑
j=0

µj[k0(um)yj,0 + kn(um)yj,n + 2
n−1∑
r=1

kr(um)yj,r].

(20)

We can write (20) in the following form,

δiyi,m = Fm +
λ∆v

2

i∑
j=0

µj[k0,myj,0 + kn,myj,n + 2
n−1∑
r=1

kr,myj,r]. (21)

Define the function,

Hi,m(yi,0, yi,1, ..., yi,n) =
1

δi
Fm +

λ∆v

2δi

i∑
j=0

µj[k0,myj,0 + kn,myj,n + 2
n−1∑
r=1

kr,myj,r],

(22)

where, (m = 0, 1, ..., n, j = 0, 1, ..., i, i = 0, 1, ..., N). Then equation (22)
represents a system of linear algebraic equations which may be written as a
matrix system, 

yi,1
yi,2
.
.
.
yi,n

 =


Hi,1(yi,0, yi,1, ..., yi,n)
Hi,2(yi,0, yi,1, ..., yi,n)

.

.

.
Hi,n(yi,0, yi,1, ..., yi,n)

 . (23)

The formula (23) represents a system of linear algebraic equation, may be
solved numerically. We will find the unique solution of this linear algebraic
system (23) which corresponds to the unique solution of (21).



Mixed integral equations 795

5 Numerical examples

In this section, we will introduce two examples as illustration for solving linear
system of the Fredholm-Volterra integral equations.
Example 5.1.

Consider the linear Fredholm-Volterra integral equations

y(u, t+ 0.0002) = g(u, t) +

∫ 1

0

(uv)2y(v, t)dv +

∫ t

0

tτ 2y(u, τ)dτ. (24)

The exact solution is y(u, t) = u2+t. If we divide the interval [0, T ], 0 ≤ T < 1,
as 0 = t0 < t1 < t2 < t3 = T, where t = ti, i = 0, 1, 2, 3, and using the TR,
the linear F-VIE (24) takes the form,

δiyi,m =0.0002u2m +
i∑

j=0

µjgj,m +
i−1∑
j=0

µj[
1

2
((tjti)

2 − t2j)− 1]yj,m

+
∆v

2

i∑
j=0

µj[(umv0)
2yj,0 + (umvn)2yj,n + 2

n−1∑
r=1

(umvr)
2yj,r],

where, v0 = 0, vn = 1, vr = r
n
, um = vr, r = 1, 2, ..., 9, j = 0, 1, 2, 3.

In table 5.1, we presented the absolute error |y(u, ti) − yi(u)|, i = 0, 1, 2, 3,
using the introduced numerical method TR with N = 3 in the interval [0, 0.6].

Table 5.1: The absolute error of solution of Eq.(24) by using TR
with N = 3 and 0 ≤ T ≤ 0.6.

um |y(um, t0)− y0(um)| |y(um, t1)− y1(um)| |y(um, t2)− y2(um)| |y(um, t3)− y3(um)|
0.1 1.99493×10−10 1.12410×10−9 6.03406×10−8 7.09999×10−7

0.2 7.97973×10−10 1.12410×10−9 6.03406×10−8 7.09999×10−7

0.3 1.80411×10−10 1.12133×10−9 6.03406×10−8 7.09988×10−7

0.4 3.19189×10−9 1.12688×10−9 6.03406×10−8 7.09999×10−7

0.5 4.99600×10−9 1.12688×10−8 6.03406×10−8 7.09999×10−7

0.6 7.21645×10−9 1.12133×10−8 6.03406×10−8 7.09999×10−7

0.7 9.76996×10−9 1.13243×10−8 6.03406×10−7 7.09988×10−7

0.8 1.27676×10−9 1.12133×10−7 6.03406×10−7 7.10010×10−7

0.9 1.62093×10−8 1.11022×10−7 6.03406×10−7 7.10010×10−7

Also, in figures 1.1-1.4, we presented a comparison between the exact solu-
tion and the approximate solution using the introduced numerical method TR
with different values of ti, i = 0, 1, 2, 3 with N = 3 in the interval [0, 1].
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Figure 1.1. Figure 1.2.
Shows the exact solution y(u, t0) = u2 + t0 Shows the exact solution y(u, t1) = u2 + t1

and the approximate solution y0(u). and the approximate solution y1(u).

Figure 1.3. Figure 1.4.
Shows the exact solution y(u, t2) = u2 + t2 Shows the exact solution y(u, t3) = u2 + t3

and the approximate solution y2(u). and the approximate solution y3(u).

Example 5.2.
Consider the linear Fredholm-Volterra integral equations

y(u, t+ 0.002) = g(u, t) +

∫ 1

0

e(u+v)y(v, t)dv +

∫ t

0

τt2y(u, τ)dτ. (25)

The exact solution is y(u, t) = eu + t. Using TR, the linear F-VIE (25) takes
the form,
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δiyi(um) =0.002 eum +
i∑

j=0

µjgj(um) +
i−1∑
j=0

µj[
tj
3

((ti)
3 − t3j)− 1]yj(um)

+
∆v

2

i∑
j=0

µj[e
(um+v0)yj,0 + e(um+vn)yj,n + 2

n−1∑
r=1

e(um+vr)yj,r].

In table 5.2, we presented the absolute error |y(u, ti) − yi(u)|, i = 0, 1, 2, 3,
using the introduced numerical method TR with N = 3 in the interval [0, 0.6].

Table 5.2: The absolute error of solution of Eq.(25) by using TR
with N = 3 and 0 ≤ T ≤ 0.6.

um |y(um, t0)− y0(um)| |y(um, t1)− y1(um)| |y(um, t2)− y2(um)| |y(um, t3)− y3(um)|
0.0 2.00000×10−9 1.10022×10−8 3.38518×10−7 9.98201×10−7

0.1 2.21034×10−9 1.11022×10−8 3.38618×10−7 9.99201×10−7

0.2 2.44281×10−9 1.11022×10−8 3.33067×10−7 1.01030×10−7

0.3 2.69972×10−9 1.11022×10−8 3.44169×10−7 1.01030×10−7

0.4 2.98365×10−9 1.11022×10−8 3.33874×10−7 1.01000×10−7

0.5 3.29744×10−9 1.11124×10−8 3.33874×10−7 1.01000×10−7

0.6 3.64424×10−9 1.11124×10−8 3.33874×10−7 1.01000×10−7

0.7 4.02751×10−9 1.11124×10−8 3.33874×10−7 1.01000×10−7

0.8 4.45108×10−9 1.11124×10−8 3.33874×10−7 1.01000×10−7

0.9 4.91921×10−9 1.11124×10−8 3.33874×10−7 1.01000×10−7

10 5.43656×10−9 1.11124×10−8 3.33874×10−7 1.01000×10−7

Also, in figures 2.1-2.4, we presented a comparison between the exact solu-
tion and the approximate solution using the introduced numerical method TR
with different values of ti, i = 0, 1, 2, 3 with N = 3 in the interval [0, 1].

Figure 2.1. Figure 2.2.
Shows the exact solution y(u, t0) = eu + t0 Shows the exact solution y(u, t1) = eu + t1

and the approximate solution y0(u). and the approximate solution y1(u).
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Figure 2.3. Figure 2.4.
Shows the exact solution y(u, t2) = eu + t2 Shows the exact solution y(u, t3) = eu + t3

and the approximate solution y2(u). and the approximate solution y3(u).

6. Conclusions

From the above results and discussion, the following may be concluded:

1. The equation (5) has an unique solution y(u, t) in the space L2[0, 1] ×
Cn[0, T ], under some conditions.

2. The mixed integral equation of the second kind, in time and position, af-
ter using quadratic method leads to a system of linear Fredholm integral
equations of the second kind in position.

3. The system of linear Fredholm integral equations, using trapezoidal rule
leads to a linear algebraic system.

4. If q << 1, we find that the numerical solution converges to the exact
solution.
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[4] S. Chiriţă, On the time differential dual-phase-lag thermoelastic model,
Meccanica, 52 (2017), no. (1-2), 349-361.
https://doi.org/10.1007/s11012-016-0414-2

[5] L.M. Delves, J. L. Mohamed, Computational Methods for Integral Equa-
tions, Cambridge, New York, London, 1985.
https://doi.org/10.1017/cbo9780511569609

[6] M.A. Golberg, Numerical Solution of Integral Equations, Springer-Verlag
US, 1990. https://doi.org/10.1007/978-1-4899-2593-0

[7] C.D. Green, Integral Equation Methods, Nelson, New York, 1969.

[8] E.V. Kovalenko, Some approximate methods for solving integral equations
of mixed problems, Journal of Applied Mathematics and Mechanics, 53
(1989), no. 1, 85-92. https://doi.org/10.1016/0021-8928(89)90138-x

[9] M.G. Krein, On a method for the effective solution of the inverse boundary
problem, Dokl. Acad. Nauk. Ussr., 94 (1954), no. 6.

[10] X.F. Shang, D.F. Han, Application of the variational iteration method for
solving nth-order integro-differential equations, Journal of Computational
and Applied Mathematics, 234 (2010), no. 5, 1442-1447.
https://doi.org/10.1016/j.cam.2010.02.020

[11] I.N. Sneddon, M. Lowengrub, Crack Problem in the Classical Theory of
Elasticity, John Wiley, 1969.

[12] A.M. Wazwaz, The combined Laplace transform-Adomian decomposition
method for handling nonlinear Volterra-integro differential equations, Ap-
plied Mathematics and Computation, 216 (2010), no. 4, 1304-1309.
https://doi.org/10.1016/j.amc.2010.02.023

Received: July 21, 2017; Published: August 28, 2017


